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Preface

As the field of complex networks entered its maturity phase, most scientists working
in this field thought that the established methodology could deal with all cases of
networked systems. However, as is usually the case in the scientific enterprise, some
novel observations showed that what we already know is only a limited case, and network
theory has still long way to go until we can make any definitive claim. The ever-increasing
availability of data in fields ranging from computer science to urban systems, medicine,
economics, and finance showed that networks that were usually perceived as distinct and
isolated are, in reality, interacting with other networks. While this sounds like a trivial
observation, it was shown that interactions of different networks can lead to unexpected
behaviors and allow systemic vulnerabilities to emerge. Nowadays, a whole series of
papers, conferences, and activities has been devoted to the analysis and modeling of
the so-called network of networks.

Since the early days when this novel view of complex networks first highlighted these
issues, the European Commission has engaged this challenge by financing research in
the area of multilevel complex systems. This book summarizes the outcome of this
engagement, as the scientific contribution for each chapter is based on a large collabora-
ting effort that was part of the MULTIPLEX project (http://www.multiplexproject.eu).
This project utilized 23 distinct research teams across Europe and, from 2012 to 2016,
explored this new area of research.

The starting point of the MULTIPLEX project has been the science of complex sys-
tems. In mathematical terms, the signature of complexity is the appearance of regularities
at multiple scales, for example, spatial and temporal correlations between topological
quantities, such as the nodes’ degree. For example, in spreading phenomena such as
diseases or information exchange in a population, the hubs of the contact networks
between individuals take a preponderant role in the various waves of the spreading. At a
higher correlation level, two-point degree correlations determine the topological mixing
(i.e., assortativity) properties of the network, which may slow down or enhance such
spreading phenomena. Moreover, from a dynamical perspective, a process taking place
on the network might coevolve with the network itself: a feedback loop can take place
between the structure of the network and what happens on it. This problem, which is
hard to solve even for simple cases, becomes much more complicated by the presence of
different layers at which the dynamics can operate. It is thus clear that further progress
in domains dominated by multilevel networks, such as the ICT domain, will certainly
benefit from an understanding of how multilevel complex systems organize and operate.

As mentioned earlier, many works have shown that networks with interactions at
different levels behave in a significantly different way than when in isolation. For exam-
ple, dependencies between networks may induce cascading failures and sudden collapses

http://www.multiplexproject.eu
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of the entire system, as, indeed, was observed in recent large-scale electricity blackouts.
Thus, a better understanding of the structure of such systems is essential for future
information technology and for improving and securing everyday life in an increasingly
interconnected and interdependent world. This makes the science of complex networks
particularly suitable for the exploration of the many challenges that we face today,
including critical infrastructures and communication systems, as well as techno-social
and socioeconomic networks.

In this book, we summarize results on the development of a mathematical, computa-
tional and algorithmic framework for the study of multilevel complex networks. These
results represent a noteworthy paradigm shift, beyond which a significant progress in the
understanding, prediction, control, and optimization of the dynamics and robustness
of complex multilevel systems can be made. Through a combination of mathematical
analysis, modeling approaches, and the use of huge heterogeneous datasets, several
relevant aspects related to the topological and dynamical organization and evolution of
multilevel complex networks have been addressed. Additionally, the theories, models, and
algorithms produced within MULTIPLEX have been tested and validated in real-world
systems of relevance in economic, technological and societal arenas.

With this book, we aim to build a guide for this fascinating novel view of complex
networks, by providing to scientists, practitioners, and, most importantly, students, the
basic knowledge that is necessary to pursue research in this field. Closing this short
preface, we would like to thank all authors for their contributions and for their fruitful
collaboration.

Stefano Battiston, Guido Caldarelli, and Antonios Garas
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1

Multilayer Networks

Sergio Gómez1, Manlio De Domenico1, Elisa Omodei1, Albert
Solé-Ribalta1,2, and Alex Arenas
1Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili,
Tarragona (Catalonia)
2Currently at Internet Interdisciplinary Institute, Universitat Oberta de Catalunya,
Castelldefels, Barcelona (Catalonia).

1.1 Multilayer, multiplex, and interconnected networks

The development of network science has provided researchers and practitioners with
the necessary theory and tools for the analysis of complex networks (see, e.g.,
[38, 210, 88, 15]). After an initial phase in which the focus was on simple and static
networks, the field has evolved in the last years toward the consideration of more involved
and dynamic topological structures. Thus, the literature is now full of references to
evolving networks, interdependent networks, multilayer networks, multiplex networks,
simplicial complexes, and hypergraphs. Here, we are going to introduce interconnected
multilayer networks, analyzing them from just a few fronts: types of multilayer networks,
their mathematical description, the dynamics of random walkers, and the centrality
(versatility) of nodes. This selection emphasizes how the interconnected multilayer
structure differs from that of the standard single-layer networks, and its influence on
dynamics on top of them. For a broader review of this field, see Ref. [37].

Multilayer networks appear naturally in real data when we realize that, in many cases,
the relationships (links) between the elements (nodes) can be of different kinds. For
example, people are connected through friendship, family, or work relations. We may
represent this structure with a network formed by three layers, one for each type of
relationship, and with the same nodes repeated in all layers. This multilayer network
allows for an explicit consideration of the different characteristics the dynamics may have
in each layer, and the interactions between them. For instance, confidential information
for a company may flow easily within the work layer, should have difficulties in jumping

Gomez, S., De Domenico M., Solé-Ribalta, A., Omodei, E., and Arenas, A., “Multilayer networks” in Multiplex and Multilevel
Networks, edited by Battiston, S., Caldarelli, G., and Garas, A. © Oxford University Press 2019.
DOI 10.1093/oso/9780198809456.003.0001
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to the other layers, and could spread slowly to family or friends due to lack of interest.
Thus, we have different behaviors in each layer, and interactions between them, which
result in more realistic but, at the same time, more complex dynamics.

It is important to discuss the difference between the topological structure which
represents the core of this study, namely interconnected multilayer networks [200, 119, 236,
72, 277, 122, 253], and other multilayer structures which have been named multiplexes
in the past and have been the subject of recent studies [170, 213, 33, 27, 274]. Note
that interconnected multilayer networks are not simply a special case of or equivalent to
interdependent networks [106]: in multilayer systems, many or even all the nodes have a
counterpart in each layer, so one can associate a vector of states to each node. This feature
has no counterpart in interdependent networks, which were conceived as interconnected
communities within a single, larger network [48, 77]. In fact, interdependent networks
are characterized by having different types of nodes, instead of links.

Historically, the term multiplex has been adopted to indicate the presence of more than
one relationship between the same actors of a social network [221]. This type of network
is well understood in terms of “coloring” (or labeling) the edges corresponding to
interactions of different nature. For instance, the same individual might have connections
with other individuals based on financial interests (indicated by, say, a red line) and
connections with the same or different individuals based on friendship (indicated by,
say, a blue line). This type of network is represented by a noninterconnected multiplex.

Conversely, in other real-world systems, like the transportation network of a city, the
same geographical position can be part, for instance, of the network of subway or the
network of bus routes, simultaneously. In this specific case, an edge-colored graph would
not capture the full structure of the network, because it is missing information about the
cost to move from the subway network to the bus route. This cost can be economic

Figure 1.1 Edge-colored versus interconnected multilayer networks. (Left) Edge-colored graph represent-
ing two different types of interactions (purple, and green) between five actors. (Right) An interconnected
multiplex representing the same actors exhibiting the same relationships but on different levels which are
separated by a cost (dotted vertical lines) to move from one layer to the other.
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Figure 1.2 Multilayered visualization of empirical interconnected multiplex networks. Interlayer con-
nections not shown for simplicity. (a) Flight routes operated by different air companies between European
airports [56]. (b) Mobility and the communication networks of sub-prefectures in the Ivory Coast, built
from mobile phone calls data [233, 176]. (c) Two different observations (separated by 3 weeks) of one
ant colony [36]. (d) Interaction network (left) of genes in Saccharomyces cerevisiae, obtained through
synthetic genetic array methodology,and correlation-based network (middle) connecting genes with similar
genetic interaction profiles [65]. We show in each layer the largest connected component, where only
pairs with high genetic interaction scores and highly correlated genetic profiles are considered. The
resultant aggregated network (right) is shown, to highlight the information loss. Visualization made with
MuxViz [71].



OUP UNCORRECTED PROOF – FIRST PROOF, 16/7/2018, SPi

4 Multilayer Networks

or might account for the time required to physically commute between the two layers.
Therefore, the interconnected multilayer topology presented in this section provides a
better representation of the system. Figure 1.1 shows an illustration of an edge-colored
graph (left) and an interconnected multiplex (right). It is evident that a simple projection
of the latter—mathematically equivalent to summing up the corresponding adjacency
matrices—would provide a network where the information about the colors is lost. On
the other hand, an edge-colored graph cannot account for interconnections, keeping
irreconcilable the two structures in Figure 1.1, which should be used to represent very
different networked systems.

For further details about the classification of such multilayer networks, we refer to Ref.
[149] and references therein.

A real-world example of a multiplex network is provided by the transportation network
of a city, where the same geographical position can be part, for instance, of the network of
a subway or the network of bus routes, simultaneously. We show in Figure 1.2(a) the case
of flight routes operated by different air companies between European airports. In other
examples, layers encode the human mobility and the mobile communication networks of
different geographical areas (Figure 1.2(b)), or physical contacts over time between ants
in a colony (Figure 1.2(c)). In biological systems, such as genetic networks, two genes
might exhibit different interactions (e.g., allelic or nonallelic) or be related because of
their chemical interactions or their functional roles (Figure 1.2(d)).

1.2 Mathematical description of multilayer networks

A first step in the analysis of multilayer networks is the development of an adequate
mathematical framework. While most single-layer networks can be described with
adjacency and/or weights matrices, multilayer networks have to account for intralayer
edges, interlayer edges, and the possibility of having replicas of the same node in several
layers. Depending on the problem at hand, the use of a set of adjacency layers, one
per layer, is enough to describe the system [27]. However, this option makes sense only
for edge-colored graphs, not for interconnected multilayer networks. A more powerful
approach consists in describing the multilayer networks with supra-adjacency matrices
[119, 149], which are block matrices formed by diagonal blocks to describe the intralayer
adjacency matrices, and off-diagonal blocks for the interlayer connections between every
pair of layers. They represent faithfully all the edges in any multilayer network, but
have problems when nodes in different layers represent the same “real” node. The most
general framework is provided by tensor algebra [72].

1.2.1 Tensorial formalism

Edge-colored graphs can be represented by a set of adjacency matrices [56, 213, 33, 27].
However, standard matrices, used to represent networks, are inherently limited in the
complexity of the relationships that they can capture, that is, they do not represent a
suitable framework in the case of interconnected multiplexes. This is the case of
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increasingly complicated types of relationships—which can also change in time—
between nodes. Such a level of complexity can be characterized by considering tensors
and higher-order algebras [72].

A great advantage of tensor formalism also relies on its compactness. An adjacency
tensor can be written using a more compact notation that is very useful for the
generalization to multilayer tensor networks. In this notation, a row vector a ∈ R

N is given
by a covariant vector aα (α = 1, . . . ,N), and the corresponding contravariant vector aα

(i.e., its dual vector) is a column vector in Euclidean space. A canonical vector is assigned
to each node, and the corresponding interconnected multilayer network is represented
by a rank-4 adjacency tensor.

However, in the majority of applications, it is not necessary to perform calculations
using canonical vectors and tensors explicitly. Consequently, a classical single-layer
network represented by a rank-2 mixed adjacency tensor W α

β [72] can be simply

indicated by W i
j, where the “abuse of notation” consists in interpreting the indices i

and j as nodes, and W i
j indicates the intensity of the relationship between them. Hence,

W i
j represents the well-known adjacency matrix of a graph, and the classical notation for

the weight wij of the link between i and j corresponds to W i
j . The “abuse of notation”

also consists in treating W i
j as a rank-2 tensor, although it explicitly indicates the entry

of a matrix, while keeping the algebraic rules governing covariant and contravariant
tensors. This “abuse of notation” dramatically reduces the complexity of some tensorial
equations, although it is worth remarking that it should be used only when calculations
do not involve canonical tensors explicitly.

To distinguish simple networks from the more complicated situations (e.g., intercon-
nected multiplex networks) that we use in this paper, we will use the term monoplex
networks to describe such standard networks, which are time independent and possess
only a single type of edge to connect its nodes.

In general, there might be several types of relationships between pairs of nodes
and a more general system represented as a multilayer object—in which each type of
relationship is encompassed in a single layer α (α = 1,2, . . . ,L) of a system—is required.
Note that α no longer has the same meaning of the index in the adjacency tensor
discussed above. To avoid confusion, in the following we refer to nodes with Latin letters
and to layers with Greek letters, allowing us to distinguish indices that correspond to
nodes from those that correspond to layers in tensorial equations.

We use an intralayer adjacency tensor for the second-order tensor W i
j (α) that indicates

the relationships between nodes within the same layer α. We take into account the
possibility that a node i from layer α can be connected to any other node j in any other
layer β. To encode information about relationships that incorporate multiple layers, we
introduce the second-order interlayer adjacency tensor Ci

j (αβ). Note that Ci
j (αα) = W i

j (α).
It has been shown that the mathematical object accounting for the whole intercon-

nected multilayer structure is given by a fourth-order (i.e., rank-4) multilayer adjacency
tensor Miα

jβ. This tensor might be simply thought as a higher-order matrix with four
indices. It is the direct generalization of the adjacency matrix in the case of monoplexes,
encoding the intensity of the relationship (which may not be symmetric) between a node
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i in layer α and a node j in layer β [72]. This object is very general and can be used to
represent structures where an actor is present in some layers but not in all of them. This
is the case, for instance, when considering a network of online social relationships, of an
individual with an account on Facebook but not on Twitter. The algebra still holds for
these situations without any formal modification. In fact, one simply introduces “empty
nodes” and assigns the value 0 to the associated edges, although the calculations of
network diagnostics should carefully account for the presence of such nodes (e.g., for
a proper normalization) [72].

Often, to reduce the notational complexity in the tensorial equations, the Einstein
summation convention is adopted. It is applied to repeated indexes in operations that
involve tensors. For example, we use this convention in the left-hand sides of the following
equations:

Ai
i =

N∑

i=1

Ai
i ,

Ai
jB

j
i =

N∑

i=1

N∑

j=1

Ai
jB

j
i ,

Aiα
jβBkβ

iγ =
N∑

i=1

L∑

β=1

Aiα
jβBkβ

iγ ,

whose right-hand sides include the summation signs explicitly. It is straightforward to use
this convention for the product of any number of tensors of any order. In the following,
we will use the tth power of rank-4 tensors, defined by multiple tensor multiplications:

(At)iα
jβ = (A)iα

j1β1
(A)

j1β1
j2β2

· · ·(A)
jt−1βt−1
jβ . (1.1)

Using repeated indexes, where one index is a subscript and the other is a superscript,
is equivalent to performing a tensorial operation known as a contraction. Note that one
should be very careful in performing tensorial calculations. For instance, using traditional
notation, the product aibj would be a number, that is, the product of the components of
two vectors. However, in our formulation, the same calculation denotes a Kronecker
product between two vectors, resulting in a rank-2 tensor, that is, a matrix.

An interesting network that can be derived from the interconnected structure is the
aggregated network, where the edges between two actors are summed up across all layers.
The superposition of the different layers is equivalent to summing up the adjacency
tensor of each layer. The corresponding aggregated network Gi

j is a monoplex and
is obtained by contracting the layer indexes of the multilayer adjacency tensor, that
is, Gi

j = Miα
jα. This aggregation loses the information about inter-layer connections. If

such information is important for the application of interest, then the tensor should be
contracted with the 1-tensor uβ

α (the rank-2 tensor with all components equal to 1), that
is, Ḡi

j = Miα
jβ uβ

α.
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This formalism is extremely useful for showing how topological descriptors of
interconnected networks differ from the ones corresponding to their aggregated graphs
[72, 66]. Moreover, it is particularly suitable for performing compact calculations.

As a representative example, let us consider the number of paths of length 2 from
a node in a certain layer to any other node in any other layer of the system. Taking
advantage of the extended algebra, it is straightforward to show that the resulting rank-4
tensor accounting for such paths is given by Hiα

jβ = Miα
kγ Mkγ

jβ . If only the number of paths
between any pair of nodes is required, regardless of the layer, then the corresponding
rank-2 tensor of paths is simply obtained by contracting with the 1-tensor uβ

α , that is, Xi
j =

Hiα
jβ uβ

α . Conversely, in the case of the aggregate, we first contract the multilayer adjacency

tensor to obtain the aggregation Ji
j = Miα

jβ uβ
α , where interlayer connections are included as

self-loops, and then square the resulting tensor to obtain Y i
j = Ji

kJk
j . Of course, a similar

argument can be used to calculate the number of longer paths. From these tensorial
equations, it is evident that the aggregated graph cannot be considered, in general, a
good proxy of the interconnected topology.

Summarizing, the tensorial formulation provides a suitable framework for several
real-world networked systems, from transportation networks to social ones. It is also
worth noting that special cases of multilayer adjacency tensors are time-dependent (i.e.,
“temporal”) networks [72, 149]. More specifically, in the case of social sciences, the
multilayer adjacency tensor can be used, for instance, to model the structural changes of
a social network over time, or to define the topology of actors involved in several different
levels of relationships and for whom it is indispensable to define an interconnection
between such levels. For these networked systems, it is desirable to adopt descriptors
(e.g., clustering coefficient, modularity, etc.) that are the natural extension of their well-
known counterparts in monoplex networks.

1.2.2 Tensorial nature of adjacency tensors

Although we have already shown in Ref. [72] the advantages of using the tensor
formalism to deal with multilayer networks, the assignment of the indices as covariant or
contravariant may seem arbitrary. The problem arises from the absence of natural basis
transformations which could guide us in this decision. The idea is that, if we perform
a change of basis governed by a matrix Qα

β , each contravariant index of any tensor is
transformed using Q, while covariant indices change with Q−1, the inverse of Q. Thus, an
object with three indexes which transforms with two Q and one Q−1 is bounded to be
1-covariant and 2-contravariant. However, these transformations are not the origin but
the consequence of the “meaning” of the object. For example, inner products, metric ten-
sors, and symplectic forms must be 2-covariant, since they are bilinear functions which
assign two vectors to a number, while linear transformations are 1-covariant and 1-contra
variant because they have to convert a vector (or 1-form) in another vector (or 1-form).

In the case of monoplex networks, the adjacency tensor may be viewed as a linear
transformation which, given a vector (or 1-form) representing a node, returns the set
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of their adjacent nodes. Thus, the only acceptable representation for the monoplex
adjacency object is a 1-covariant and 1-contravariant tensor. Likewise, the multilayer
adjacency tensor transforms a node in one layer into the set of adjacent nodes, keeping
also the information of which layer they belong to; thus, a 2-covariant and 2-contravariant
tensor is needed.

Once we know the order of the adjacency tensor, its transformation under a change
of coordinates is completely determined. First, we show how this works for a single-layer
network and, afterwards, for a full multilayer network.

By following Ref. [72], the adjacency tensor W α
β of a network can be represented as

a linear combination of tensors of the canonical basis by

W α
β =

N∑

i, j=1

wijeα(i)eβ( j) =
N∑

i, j=1

wijEα
β (ij), (1.2)

where Eα
β (ij) ∈ R

N×N indicates the tensor of the canonical basis corresponding to the

tensorial product of the canonical vectors e(i) and e†( j) (defined in R
N ) assigned to

nodes i(eα(i)) and j(eβ( j)), respectively.
Let

Qα
β =

N∑

i=1

e′α(i)eβ(i) (1.3)

be the change of basis tensor which transforms the basis vector set {eα(i), i = 1, . . . ,N}
into a second set {e′α(i), i = 1, . . . ,N}. Here, Qα

β is expressed in terms of the basis
vectors from both bases, and it is straightforward to show that e′α(i) = Qα

βeβ(i) and
e′β(i) = eα( j)(Q−1)αβ . By remarking that a change of basis should not affect the intensity
of the relationship between nodes ni and nj , by following the above prescription, we
obtain

W ′γ
δ =

N∑

i, j=1

wije′γ (i)e′δ( j) =
N∑

i, j=1

wijQγ
α eα(i)eβ( j)(Q−1)

β
δ

= Qγ
α

⎡

⎣
N∑

i, j=1

wijeα(i)eβ( j)

⎤

⎦(Q−1)
β
δ = Qγ

αW α
β (Q−1)

β
δ , (1.4)

providing the desired tensor transformation law.
In the following, we use the same notation as in Ref. [72], to avoid confusion. In the

same spirit, we introduce the vectors eγ̃ (k) (γ̃,k = 1, . . . ,L) of the canonical basis in the
space R

L , where the Greek index indicates the components of the vector, and the Latin
index indicates the kth canonical vector. Therefore, it is straightforward to build the
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second-order tensors E γ̃

δ̃
(hk) = eγ̃ (h)eδ̃(k) representing the canonical basis of the space

R
L×L .
The representation of the multilayer object Mαγ̃

βδ̃
in terms of the Kronecker product

of canonical vectors is given by [72]

Mαγ̃

βδ̃
=

N∑

i, j=1

L∑

h,k=1

wij(hk)eα(i)eβ( j)eγ̃ (h)eδ̃ (k). (1.5)

Proceeding as in the case of a single-layer network, we obtain

M′αγ̃

βδ̃
=

N∑

i, j=1

L∑

h,k=1

wij(hk)Qα
ρeρ(i)(Q−1)σβ eσ ( j)Q̃

γ̃

φ̃
eφ̃(h)(Q̃

−1
)ε̃
δ̃
eε̃ (k)

= Qα
ρQ̃

γ̃

φ̃
Mρφ̃

σ ε̃
(Q−1)σβ (Q̃

−1
)ε̃
δ̃
, (1.6)

providing the desired transformation law of the multilayer adjacency tensor under a
change of coordinates.

1.2.3 Eigenvalue problem with tensors

The eigenvalue problem for a rank-2 tensor, that is, a standard matrix, is defined by
W i

j vi = λvj . The extension of this problem to rank-4 tensors leads to the equation

Miα
jβ Viα = λVjβ . (1.7)

To solve this problem, it is worth noting that any tensor can be unfolded to lower-rank
tensors [154]. For instance, a rank-2 tensor like W i

j, with N2 components, can be flattened
to a vector wk with N2 components. In the case of the rank-4 multilayer adjacency tensor
Miα

jβ, although any unfolding is allowed, it is particularly useful for some applications to

choose the ones flattening to a squared rank-2 tensor M̃k
l with NL × NL components,

where L indicates the number of layers [119]. In fact, this unfolding produces as many
block adjacency matrices, named supra-adjacency matrices in some applications [119, 149,
73, 66], as the number of permutations of diagonal blocks of size N2, that is, L!. However,
such unfoldings do not alter the spectral properties of the resulting supra-matrix and can
be used to solve the eigenvalue problem for rank-4 tensors. In fact, the solution of the
eigenvalue problem

M̃k
l ṽk = λ̃1ṽl , (1.8)

is a supra-vector with NL components which corresponds to the unfolding of the
eigentensor Viα. We will make use of this eigenvalue formalism for tensors in Section 1.4.
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1.3 Random walks in multiplex networks

Random walks constitute one of the simplest dynamics one can define on top of graphs
or complex networks [311, 290, 180]. They can be used to approximate other types
of diffusion [61, 210]. Random walks on monoplex networks [61, 214, 210] have
attracted considerable interest because they are both important and easy to interpret.
They have yielded important insights into a huge variety of applications and can be
studied analytically. For example, random walks have been used to rank Web pages [46]
and sports teams [55], optimize searches [304], investigate the efficiency of network
navigation [313, 68], characterize cyclic structures in networks [247], and coarse-grain
networks to illuminate mesoscale features such as community structure [115, 242, 167].

In a random walk process, the walker is initially positioned in any node and then
starts to navigate the network, following the available edges. At each step, the edge is
selected at random between the outgoing links of the current node, hence the name
“random walker.” If the network is undirected and connected, all nodes have a nonnull
probability of being visited, and these probabilities are proportional to the degrees of the
nodes (in the limit of paths of infinite length). The analysis of random walks for specific
complex network topologies, such as networks with power-law degree distributions or
small-world architectures, has revealed the different ways in which the networks are
explored [214, 313].

When the network is structured in layers, the navigation of the random walker is
formed by two kinds of movements: intralayer steps, in which the walker jumps between
nodes within the same layer, and interlayer steps, where the walker switches from one
layer to another one. In what follows, we will consider multiplex networks, the particular
case of general multilayer networks in which the same nodes are present in all layers,
and interlayer connections appear only between the different instances of the same node
(see Figure 1.3). The multiplex networks can be weighted, thus converting the random
walks in biased random walks, as we will specify below. The analysis of random walks in
multiplex networks we are going to describe can be found in [73].

Given a multiplex network with N nodes in each of the L layers, we use W (α)
ij to

indicate the weighted intralayer connection between two vertices i and j in layer α, where
Latin letters refer to vertices (i, j = 1,2, ...,N), and Greek letters indicate layers (α =
1,2, ...,L). Similarly, Dαβ

(i) denotes the weight of switching from layer α to layer β when

located in a vertex i. Without loss of generality, we may suppose that W (α)
ii = 0 for all

nodes i, since these self-loops can be accounted for in the terms Dαα
(i). The corresponding

weighted NL × NL supra-adjacency matrix becomes1

A =

⎛

⎜⎜⎜⎝

D11 + W(1) D12 . . . D1L

D21 D22 + W(2) . . . D2L

...
...

. . .
...

DL1 DL2 . . . DLL + W(L)

⎞

⎟⎟⎟⎠ , (1.9)

1 In this section, we (partly) adopt the supra-adjacency formalism and notation instead of the tensorial one
in order to emphasize the difference in role between intralayer and interlayer links.
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Figure 1.3 Example of the navigation on a multiplex network. Path (dotted pink line) of a random
walker through the multiplex structure. Note how the walker is able to visit disconnected components. In
this example, there are no intralayer links between Layers 1 and 3.

where we have used boldface to represent the matrices W(α) (intralayer weights of
layer α) and Dαβ (a diagonal matrix with the weights of switching from layer α to layer β).
A commonly studied particular case is the one in which the switching-layer weight is the
same for all nodes, so that Dαβ = DαβI, where I is the N × N identity matrix:

A =

⎛

⎜⎜⎜⎝

D11I + W(1) D12I . . . D1LI
D21I D22I + W(2) . . . D2LI

...
...

. . .
...

DL1I DL2I . . . DLLI + W(L)

⎞

⎟⎟⎟⎠ . (1.10)

It is advantageous to distinguish between the strength siα = ∑
j W (α)

ij of a node i with
respect to its connections with other nodes j in the same layer α, and the strength Siα =∑

β Dαβ

(i) of the same vertex with respect to connections to its counterparts in different
layers.

1.3.1 Navigation on a multiplex network

The description of the random walk navigation on a multiplex network is completely
specified by the transition probabilities P iα

jβ, which account for the probabilities that a
random walker at node i in layer α moves to vertex j in layer β. The master equation of
this process reads2

2 For convenience, we will not use the Einstein summation convention throughout Section 1.3.
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pjβ(t + �t) =
L∑

α=1

N∑

i=1

P iα
jβ piα(t), (1.11)

where piα(t) represents the probability of the random walker being in node i of layer α

at time t. Equation 1.11 expresses that the probability of being in (j,β) at time t + �t is
equal to the probability of being in any other (i,α) at time t, and then jumping to (j,β).
The double sum in Eq. 1.11 can be separated into four terms:

pjβ(t + �t) = P jβ
jβ pjβ(t)+

L∑

α=1
α �=β

P jα
jβ pjα(t)

+
N∑

i=1
i �=j

P iβ
jβ piβ(t)+

L∑

α=1
α �=β

N∑

i=1
i �=j

P iα
jβ piα(t), (1.12)

which take into account that, in the previous time step, the random walker could have
already been in node j and/or layer β.

Equation 1.11 can be put in a more compact form if we define pα as the row
vector with N components piα with respect to layer α and introduce the supra-vector
p ≡ (p1,p2, . . . ,pL) with NL components. Now, Eq. 1.11 can be written as

ṗ(t) = −p(t)L, (1.13)

hereafter referred to as the “random walk equation.” In this equation, L refers to the
NL × NL normalized supra-Laplacian matrix, whose structure is similar, although not
identical, to the (unnormalized) supra-Laplacian matrix proposed in [119] to model the
diffusion process in multiplex networks (see also [277]). The structure of the random
walk equation is the same regardless of the transition probabilities P iα

jβ adopted in
Eq. 1.12. In particular, we are going to analyze four different prescriptions for the random
walk dynamics: classical, diffusive, physical, and maximum entropy random walks.

1.3.2 Classical random walks

The classical description of random walkers on a graph (i.e., monoplex networks) is
already present in [311, 290, 180], although applications to networks with complex
topologies are more recent [214, 313].

In monoplex networks, the random walker has probability 1/ki of moving from vertex
i to vertex j in the neighborhood of i, where ki indicates the degree of a vertex i. The direct
extension of such walks to the case of multiplex networks is considering the interlayer
connections as additional edges available in vertex i. It follows that the probability of
moving from vertex i to vertex j within the same layer α or of switching to the counterpart
of vertex i in layer β is uniformly distributed. In such a scenario, the normalizing factor
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for obtaining the correct probability is the total strength siα + Siα of vertex i. The resulting
transition probabilities for this classical random walker in a multiplex (RWC) are given in
Table 1.1. For sake of completeness, the Laplacian matrix corresponding to this process
in monoplex networks is generally referred to as the normalized Laplacian.

1.3.3 Diffusive random walks

In monoplex networks, this type of random walk has been studied in detail in [252].
Here, the random walker stays at vertex i with a rate that depends on i. In fact, if kmax =
maxi{ki} is the maximum degree in the network, the walker is allowed to wait in vertex
i with rate 1 − ki/kmax and to jump to any neighbor with rate 1/kmax. This procedure is
equivalent to adding a weighted self-loop to each node in such a way that all nodes have
the same strength. It can be shown that the corresponding random walk equation depends
on the unnormalized Laplacian matrix, as in the classical diffusive process, hence the
name “diffusive random walk.”

We extend this walk to the case of multiplex networks by considering interlayer
connections as additional edges to estimate the maximum vertex strength, smax =
maxi,α{siα + Siα}. The resulting transition rules for this random walker in a multiplex
(RWD) are given in Table 1.1.

1.3.4 Physical random walks

Here, we propose a new type of random walk dynamics in the multiplex, which reduces
to the classical random walk in the case of monoplex. The transition rules are the same,

Table 1.1 Transition probability for four different random walk processes on multiplex networks. We
account for jumping between vertices (Latin letters) and switching between layers (Greek letters). When
appearing in pairs, j �= i and β �= α must be considered. See text for further detail.

Transition Probability RWC RWD RWP RWME

P iα
iα

Dαα
(i)

siα + Siα

smax + Dαα
(i) − siα − Siα

smax
0

Dαα
(i)

λmax

P iα
iβ

Dαβ

(i)

siα + Siα

Dαβ

(i)

smax
0

Dαβ

(i)

λmax

ψ(β−1)N+i

ψ(α−1)N+i

P iα
jα

W (α)
ij

siα + Siα

W (α)
ij

smax

W (α)
ij

siα

Dαα
(i)

Siα

W (α)
ij

λmax

ψ(α−1)N+j

ψ(α−1)N+i

P iα
jβ 0 0

W (β)

ij

siβ

Dαβ

(i)

Siα
0

Abbreviations: RWC, classical random walker; RWD, random walker in a multiplex; RWME, maximal entropy
random walker in a multiplex; RWP, physical random walker in a multiplex.
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except that we assume that the timescale for switching layers is negligible with respect
to the timescale required to move from one vertex to another one in its neighborhood.
Therefore, in the same time step, the random walker is allowed to both switch layers
and jump to another vertex, with the layer-switching and vertex-jumping actions being
independent. This is a fundamental difference from the random walkers described so far,
because they were not allowed to both switch and jump in the same time unit. Moreover,
another major difference lies in treating interlayer connections as another type of edge,
one that does not compete with the intralayer edges.

As an example of this dynamics, one might imagine the case of online social networks
where each layer corresponds to a different social structure (e.g., Facebook and Twitter),
and users play the role of vertices. In this case, the time required by a user to switch from
one layer to the other one requires less than a few seconds.

The resulting transition rules for this physical random walker in a multiplex (RWP)
are given in Table 1.1. It is straightforward to show that this process is equivalent to the
classical random walker in the case of monoplexes.

1.3.5 Maximal entropy random walks

In classical random walks, a walker jumps from a vertex to a neighbor with uniform
probability that depends only on the local structure, namely, the vertex strength.
However, a walk dynamics has recently been proposed where the transition rate of jumps
is influenced by the global structure of the network [49], or only local information is
available [267]. More specifically, the walkers choose the next vertex to jump into so as
to maximize the entropy of their path at a global level, whereas classical random walkers
maximize the entropy of their path at neighborhood level. To achieve such maximal
entropy paths, the transition rates are governed by the largest eigenvalue of the adjacency
matrix, and the components of the corresponding eigenvector [49].

In the case of multiplex networks, we use the supra-adjacency matrix Eq. 1.9 to achieve
the same result. We indicate with λmax the largest eigenvalue of this matrix and with ψ the
corresponding eigenvector. Therefore, according to the prescription given in [49],
the resulting transition rules for this maximal entropy random walker in a multiplex
(RWME) are given in Table 1.1.

1.3.6 Comparison of types of random walkers

A representative example of each walk is shown in Figure 1.4, where vertices and layers
visited by one random walker up to 100 time steps are reported. We show two different
cases, corresponding to different choices of interlayer weights, to make evident the
differences in the dynamics.

In the top panels of Figure 1.5, we show the transition probabilities in the case of a
multiplex of 20 vertices embedded in two different realizations of a Watts–Strogatz small-
world network [308]. The probability of finding a random walker in a certain vertex on a
certain layer is also shown in the same figure, considering one walk starting from the first
vertex only (middle panels) and from any other vertex with uniform probability (bottom
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Figure 1.4 Random walks realizations on different multiplex structures. Vertices (top panels) and layers
(bottom panels) visited by one random walker in 100 time steps. The four types of walk considered in this
study are shown. The multiplex is built with one Barabási–Albert (BA, Layer 1) and one Erdős–Rényi
(ER; Layer 2) network with 200 vertices, while interlayer weights are specified above.
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Figure 1.5 Probabilities governing four random walk strategies on multiplex networks. (Top) Transition
probabilities for walks considered in this study. Note that we have rescaled by a factor of 2 the transition
matrix of the diffusive walk for better visualization and to allow comparisons. (Middle) Occupation
probability, for each vertex in each layer, considering one random walk starting only from the first
vertex. (Bottom) As in the middle panels, but considering one random walk starting with uniform
probability from any other vertex. Multiplex of 20 vertices embedded in two different realizations of a
Watts–Strogatz small-world network (rewiring probability is 0.2), where D11 = D12 = D21 = D22 = 1.
Different exploration strategies are responsible for the different probability that a vertex is visited and
occupied by a random walker.

panels). As expected, different exploration strategies result in different occupation
probabilities, where some vertices in a certain layer might be explored more (or less)
frequently, as in the case of RWC, RWP, and RWME, or uniformly, as in the case
of RWD.

Figures 1.4 and 1.5 clearly highlight the different dynamics and how navigation
strategy influences the exploration of the multiplex.

1.3.7 Occupation probability of random walkers

We define the occupation probability of node i in layer α as the probability of finding
the random walker in that location of the multiplex, in the limit of large time, iα =
limt→∞ piα(t). We also indicate with  the corresponding supra-vector. In general,  is
the left eigenvector of the supra-transition matrix corresponding to the unit eigenvalue.
In some cases, the occupation probability can be estimated from the detailed balance
equation

iαP iα
jβ = jβP jβ

iα, (1.14)
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obtaining

iα = siα + Siα∑
β

∑
j(sjβ + Sjβ)

(1.15)

for RWC, generalizing the well-known result obtained for walks in a monoplex network,

iα = 1
NL

(1.16)

for RWD, as expected for a purely diffusive walk, and

iα = ψ2
(α−1)N+i (1.17)

for RWME, generalizing the results obtained in [49] for monoplex networks.
Indeed, following the approach proposed in [214] for random walks on monoplexes,

it is possible to show that the time required for a random walker starting from vertex i
to arrive back to the same vertex, that is, the mean return time, is given by

〈Tii〉 = 1
L∑

α=1
iα

. (1.18)

It is straightforward to verify that distributions expected in the case of monoplex are
recovered for L = 1. It is worth noting that for classical random walks, the occupation
probability of vertex i is proportional to its supra-strength, that is, intra- plus interlayer
strengths, whereas for diffusive walks, such a probability is the same for any vertex,
regardless of multiplex topology.

1.3.8 Random walks coverage

The coverage of a random walk is an important measure which quantifies how difficult
(or easy) is to visit all the nodes in a network. There are two main approaches for defining
the coverage: (i) calculate the expected time the random walker takes to visit all the nodes;
(ii) calculate the average fraction of visited nodes as a function of the length of the walk.
Here, we adopt the second option, which is computationally friendlier, and denote the
coverage as ρ(t). In multiplex networks, one has to take into account that the same node is
present in all layers; thus, the logical approach is to consider a node to have been “visited”
if the random walker visited that node at least once in any of the layers. For example, in a
multiplex transportation network consisting of buses, trains, and a metro, it is not impor-
tant if you have arrived at a location by bus or metro; what counts is having been there.

First, the probability of finding the random walker at node i at time t, regardless of
the layer, is given by pi(t) = ∑

α piα(t). Introducing the supra-vector Ei ≡ (ei ,ei , . . . ,ei),
where ei is the ith canonical vector, we may write
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pi(t + 1) = p(t)PE†
i . (1.19)

We have set �t = 1 to make t equivalent to the walk length. Next, we define the probability
σij(t) of not finding the random walker at node i after t time steps, assuming that it started
at vertex j. This probability satisfies the recursive relation

σij(t + 1) = σij(t) [1 − pi(t + 1)], (1.20)

which can be written as

σ̇ij(t) = −σij(t)p(t)PE†
i (1.21)

and whose solution is

σij(t) = σij(0)exp
[
−pj(0)PE†

i

]
, P =

t∑

τ=0

Pτ+1, (1.22)

where pj(0) ≡ (ej ,0, . . . ,0) explicitly indicates that at time t = 0, the walker started at
vertex j in the first layer, without loss of generality. The matrix P accounts for the
probability of reaching each vertex through any path of length 1,2, . . . , t + 1. Note also
that σij(0) = 1 − δij , where δij is the Kronecker delta, since a walk starting at node i cannot
also at the same time be at node j unless i = j. Finally, a good approximation of the
coverage is given by double averaging over all vertices the probability 1 − σij(t), obtaining

ρ(t) = 1 − 1
N2

N∑

i,j=1
i �=j

exp
[
−pj(0)PE†

i

]
, (1.23)

which can be solved numerically to obtain the coverage at each time step. Comparisons
between the predicted coverage using Eq. 1.23 and Monte Carlo simulations show a
perfect agreement, thus confirming the validity of our theoretical development (see [73]).
It must be pointed out that this expression for the coverage is applicable not only to
multiplex networks but also to standard single-layer networks.

We show in Figure 1.6 the coverage versus time in the case of RWP only, for some
representative multiplexes where D12

(i) = D21
(i) = D11

(i) = D22
(i) = 1, ∀i = 1, . . . ,N . Results for

different combination of topologies (indicated by double acronyms in the figure) are
shown, together with results for walks in a single layer (indicated by single acronyms in
the figure). The topologies analyzed include Erdős–Rényi (ER), Barabási–Albert (BA),
and Watts–Strogatz (WS) networks. The abbreviation “diff” indicates that the layers
have the same topology but different random realizations, while “same” indicates that the
same topology and same random realization is present in both layers. The inset shows
the relative difference of coverages with respect to the case of an ER monoplex.
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Figure 1.6 Dependence of the coverage on multiplex topology: number of visited vertices versus time for
monoplex and multiplex topologies (see the text for further details). The inset shows the relative difference
of each curve with respect to the coverage obtained for an ER monoplex, showing that vertices in different
topologies are visited with different timescales.

The multiplex topology has an evident impact on the walk process, delaying or
accelerating the exploration of the network with respect to a random search in a
monoplex random network. This is a genuine effect of the multilayer structure, and it is
not related to the finite size of the considered networks, as shown in Figure 1.7, where
multiplexes of 2,000 nodes and many different topologies are considered.

In Figure 1.8, for each random walk considered, we show the inverse of the time τC
required to cover 50% of a BA+ER multiplex with 200 vertices as a function of the
interlayer weight DX = D12 = D21, with D11 = D22. It is worth mentioning that the final
result depends quantitatively, but not qualitatively, on the choice of the covered fraction.
This representative example shows the impact of transition rules on the exploration of the
multiplex, providing evidence that the best strategy to use to cover the network depends
on the topology and on the weight of inter-layer connections. Moreover, in this specific
experiment, the walk in the multiplex is infra-diffusive (sub-diffusive), depending on the
value of DX, that is, the time to cover the multiplex lies between (is smaller than) the
times required to cover each layer separately. It is worth noting that in other cases, like
RWME on BA+BA multiplexes, walks show enhanced diffusion, that is, the time to cover
the multiplex is smaller than the time to cover each layer separately. This is shown, for
instance, in Figure 1.9.

1.4 Centrality and versatility

In this section, we focus on the definition of node centrality in multilayer networks. We
obtain these properties using algebraic operations involving the multilayer adjacency
tensor, canonical vectors, and canonical tensors, achieving the natural extension of the
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Figure 1.7 Dependence of the coverage on multiplex topology: same as the inset of Figure 1.6, where
the relative difference of each curve is calculated with respect to the coverage obtained for a multiplex of
two different scale-free (SF) networks with exponent 1.2. Top panels refer to RWC, whereas bottom panels
refer to RWP. Left panels (top and bottom) refer to multiplexes of different scale-free networks with other
degree distributions, whose exponents are specified in the legend. Right panels (top and bottom) refer to
multiplexes of other topologies.

concept of centrality in single-layer networks. We refer the reader to Ref. [72] for other
multilayer network diagnostics.

In practical applications, one is often interested in assigning a global measure of
importance to each node, aggregating the information obtained from the different
layers. A naive choice could be to combine the centrality of the nodes—obtained from
the different layers separately—according to some heuristic choice. This is a viable
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Figure 1.8 Critical dependence of the coverage on navigation strategy and interlayer connection strength.
Different random walks are used to calculate the inverse of the time τC required to cover 50% of a BA+ER
multiplex with 200 vertices, as a function of DX = D12 = D21. The values for walks in each layer are
shown for comparison and make clear how different exploration strategies have a strong effect on the
coverage timescale.

solution when there is no interconnection between layers, that is, in the case of edge-
colored graphs [274, 125]. However, the main drawback of applying this approach to
interconnected multilayer networks is that the measure will depend on the choice of the
heuristics and might not evaluate the real importance of nodes. Conversely, our approach
capitalizes on the tensorial formulation of interconnected multilayer networks and
accounts for the higher level of complexity of such systems without relying on external
assumptions and naturally extending the well-known centrality measures adopted for
several decades in the case of monoplexes.

1.4.1 Eigenvector centrality

Among the numerous notions of centrality introduced to quantify the importance of
nodes (and other components) in a network [307], eigenvector centrality is among the
oldest ones [43, 42]. The eigenvector centrality of a node is defined to be proportional
to the sum of the eigenvector centralities of its neighbors. The recursive nature of this
notion yields a vector of centralities that satisfies an eigenvalue problem. In the case of
monoplexes, the eigenvector centrality vector v, whose components are the centralities of
nodes according to [43, 42], is a solution of the eigenvector equation W i

j vi = λ1vj , where

λ1 is the largest eigenvalue of W i
j, and vi indicates the eigenvector centrality of node i

(note the use of the Einstein summation convention).
A naive approach for the calculation of the importance of each node in an inter-

connected network might be to project the interconnected topology to an aggregated
monoplex and to associate to each node the centrality that node has in such an aggregated
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Figure 1.9 Different types of diffusion characterize different topological structures and navigation
strategies. Coverage versus time for two different multiplex topologies (BA+BA on the top panels, and
BA+WS on the bottom panels) and two different walk rules (RWC on the left panels, and RWME on
the right panels). While the diffusion on single layers separately and that on the multiplex are similar for
RWC on BA+BA, this is not the case for RWME on BA+BA, where enhanced diffusion is shown in the
multiplex. In the other cases, the diffusion is infra-diffusive.

network. The main drawback of this approach is that it mixes the information from all
layers, with uncontrollable effects, as shown in Ref. [74] for both synthetic and empirical
networks. Another attempt to extend this calculation to the case of multilayer networks
might be to calculate the eigenvector centralities for each layer separately, to build the
tensor V̄ iα encoding the centrality of each node in each layer. The final step would be to
choose a heuristic aggregation of such centralities to assign a unique centrality measure
to each node, regardless of the layer. However, the tensor V̄ iα is not the solution of a
unique eigenvalue problem but the combination of the solutions of L different eigenvalue
problems treated separately; therefore, it is not a natural extension of the notion of
eigenvector centrality to the realm of interconnected multilayer networks.
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Instead, according to Ref. [72], this descriptor can be obtained as the solution of the
tensorial equation

Miα
jβ�iα = λ1�jβ , (1.24)

where λ1 is the largest eigenvalue, and �iα is the corresponding eigentensor encoding
the centrality of each node in each layer when accounting for the whole interconnected
structure. The eigentensor can be obtained by means of an iterative procedure, as the
power method in the case of monoplexes. An analysis of this eigentensor problem is
provided in Section 1.2.3. Thus, the multilayer generalization of Bonacich’s eigenvector
centrality [43, 42] is given by Eq. 1.24.

This centrality, like others in the rest of this section, assigns a measure of importance to
each node in each layer, accounting for the full interconnected structure of the multilayer
network. However, in practical applications, one is often interested in assigning a global
measure of importance to each node, aggregating the information obtained from the
different layers. The choice of the aggregation method is not trivial; it strongly influences
the final estimation and might lead to wrong results. However, this is not case for the
tensorial framework discussed so far. In fact, the centrality �iα is calculated by inherently
accounting for the interconnected structure of the whole system. We do not need to
arbitrarily combine the information from different separate measures. In our framework,
the most intuitive type of aggregation, that is, summing up over layers, represents the
unique and correct choice. Thus, the eigenvector centrality of each node becomes
θi = �iαuα, where uα is the tensor with all components equal to 1.

1.4.2 Katz centrality

It is a well-known fact that eigenvector centrality can lead to incorrect results in the case of
directed networks. In fact, nodes with only outgoing edges have an eigenvector centrality
of 0 if Bonacich’s definition is adopted. Moreover, in this case, there are two leading
eigenvectors, for incoming centrality and outgoing centrality, requiring distinguishing
between covariant and contravariant calculations. The Katz centrality [144] solves the
above problem by assigning a small amount b of centrality to each node before calculating
centrality. For monoplexes, the Katz centrality is given by vj = aW i

j vi + buj , where a
must be smaller than the reciprocal of the largest eigenvalue λ1 of W, and one often
chooses b = 1.

Following a similar idea, we define the centrality tensor for each node in each layer as
the solution of the tensorial equation

�jβ = aMiα
jβ�iα + bujβ, (1.25)

corresponding to the natural extension of the equation proposed by Katz to the case of
interconnected multilayer networks. The solution is given by �jβ = [(δ − aM)−1]iα

jβUiα,

where δiα
jβ = δi

j δ
α
β . As for the eigentensor centrality, this Katz centrality tensor accounts for
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the whole interconnected topology and it is enough to contract it with the 1-vector to
obtain the Katz centrality for each node, that is, φi = �iαuα.

1.4.3 Hubs and authorities centrality

In directed networks, such as Web sites, we can rank nodes differently according to
their importance as senders or receptors of links, respectively. The Hyperlink-Induced
Topic Search (HITS) approach, also known as the hubs and authorities’ algorithm
[150], assigns two different descriptors for each node, namely, hub and authority. In
fact, Web pages that point to an important page generally also point to other important
pages, building a structure similar to a bipartite topology where relevant pages—that is,
authorities—are pointed by special Web pages—that is, hubs. It follows that nodes with
high authority centrality are linked by nodes with high hub centrality, while very influent
hubs point to nodes that are very authoritative. Such a mechanism is described by two
coupled equations which reduce to the two eigenvalue problems (WW †)i

jvi = λ1vj and

(W †W )i
jzi = λ1zj , where W † denotes the transpose of the adjacency matrix, λ1 indicates

the leading eigenvalue, and vi and zi indicate hub and authority scores, respectively. The
natural extension of the equations proposed by Kleinberg to the case of interconnected
multilayer networks is given by

(MM†)iα
jβ�iα = λ1�jβ , (1.26)

(M†M)iα
jβϒiα = λ1ϒjβ , (1.27)

where �iα and ϒiα indicate hub and authority centrality, respectively. It is worth
remarking that for undirected interconnected multiplexes, hub and authority scores are
the same as and equal to the corresponding eigenvector centrality. The hub and authority
tensors should be contracted with the 1-vector to obtain the scores corresponding to each
node regardless of the layer, that is, γi = �iαuα, and υi = ϒiαuα, respectively.

1.4.4 Random walk centralities

Random walks can also be used to calculate the centrality of actors in complex networks,
for example, when there is no knowledge of the full topology, and only local information
is available. In such cases, centrality descriptors based on the shortest paths, for example,
betweenness and closeness centrality, should be substituted by centrality notions based
on random walks [214, 211].

As we have seen in Section 1.3, a random walk on a multilayer network induces
nontrivial effects because the presence of interlayer connections affects its navigation of a
networked system [73]. Let P iα

jβ denote the tensor of transition probabilities for jumping
between pairs of nodes and switching between pairs of layers, and let piα(t) be the time-
dependent tensor that gives the probability of finding a walker at a particular node in
a particular layer. Hence, the covariant master equation that governs the discrete-time
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evolution of the probability from time t to time t + 1 is given by Eq. 1.11, which reads
pjβ(t + 1) = P iα

jβ piα(t).
The steady-state solution of this equation is given by iα , quantifying the probability

of finding a walker in the node i of layer α in the infinite-time limit. In the case of
monoplexes, the steady-state solution can be obtained by solving the eigenvalue problem
for the rank-2 transition tensor and calculating the leading eigenvector corresponding to
the unitary eigenvalue. Similarly, in the case of multilayer networks, the solution can be
obtained by calculating the leading eigentensor, solution of the higher-order eigenvalue
problem

P iα
jβ iα = λjβ . (1.28)

We refer to Section 1.2.3 for the mathematical details to solve this problem. The
probability iα, which we define as random walk occupation centrality, depends on the full
interconnected structure of the multilayer network and, likewise, the previously described
multilayer centralities. Finally, we may aggregate by layer to obtain the corresponding
node centralities, πi = iαuα.

Although different exploration strategies can be adopted to walk in a multilayer
network [73], we first focus on the classical random walks (RWC) as previously described
in Section 1.3.2. Let us indicate with �iα the strength of node i in layer α, including
the interlayer connections, that is, �iα = siα + Siα, where siα and Siα are the intralayer
and interlayer strengths, respectively. The multi-strength vector, whose components
indicate the strength of each node accounting for the full multilayer structure, is given
by summing up its strengths across all layers, that is, by ωi = �iαuα. We indicate with
Diα

jβ the strength tensor whose entries are all zeros, except for the i = j and α = β entries,
which are given by �iα . This tensor represents the multilayer extension of the well-known
diagonal strength matrix in the case of monoplexes. Therefore, the transition tensor is
given by P iα

jβ = Mkγ

jβ D̃iα
kγ, where D̃iα

jβ is the tensor whose entries are the reciprocals3 of the
non-zero entries of the strength tensor. For this classical random walk, it can be easily
shown that iα ∝ �iα [73].

It is worth noting that, in this specific case, the computation of the centrality by means
of the aggregated network would provide the same centralities for the interconnected
multiplex, if interlayer edges were replaced by self-loops. In the more specific case that
the interlayer edges have the same strength for all nodes, the random walk centrality will
be just a linear function of the strengths in the aggregated network, without the necessity
of accounting for the self-loops, thus recovering the traditional degree centrality [265, 101]
for unweighted, undirected monoplex networks. However, this is no longer the case for
the other centrality measures discussed in this section, where calculating the diagnostics
from the aggregate might lead to wrong conclusions.

3 It is worth remarking that, in general, this is different from the inverse of a tensor Aiα
jβ, which is defined as

the tensor Biα
jβ such that Aiα

kγ
Bkγ

jβ = δiα
jβ, where δiα

jβ = δi
j δ

α
β.
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For the other types of random walkers, namely diffusive (RWD), physical (RWP),
and maximal entropy (RWME), see Section 1.3 and, in particular, Section 1.3.7, which
provide the different occupation probabilities, leading to the respective alternative
definitions of random walk occupation probability centralities.

Apart from centralities derived from random walk occupation probabilities, it is
possible to define additional centralities based on other properties of the random walkers.
The most relevant are PageRank [46], which will be described in Section 1.4.5, random
walk betweenness centrality and random walk closeness centrality [211]. Random walk
betweenness measures the net flow of random walkers through nodes, and random walk
closeness is related to the mean first passage time needed to reach a node from the rest of
locations in the network. See Ref. [276] for their extension to multilayer interconnected
networks.

1.4.5 PageRank centrality

We capitalize on the previous analysis of random walkers to extend to interconnected
networks a widely adopted measure of centrality, that is, the PageRank centrality [46].
A recent study in this direction has been reported in [125], in the case of edge-colored
graphs, where the authors, exploiting the random walk interpretation of PageRank
centrality, define the PageRank of a multiplex network by means of a random walk subject
to teleportation. In that study, the PageRank for nodes in the first layer is computed using
the standard definition for a monoplex [46], whereas the PageRank for nodes in the
second layer is computed using the centrality information obtained from the first one. It
is worth noting that this definition is limited to edge-colored graphs with only two layers,
with any extension to a larger number of layers being possible but very complicated from
the mathematical point of view.

Here, we exploit the fact that PageRank centrality can be seen as the steady-state
solution of the equation pj(t + 1) = Ri

jpi(t) in the case of monoplexes, where Ri
j is the

transition matrix of a random walk where the walker jumps to a neighbor with rate r and
then teleports to any other node in the network with another rate, 1 − r. In the case of
interconnected multilayer networks, the teleportation might occur to any other node in
any layer. Depending on the application of interest, the walker can be teleported to other
nodes with a rate that is specific to each layer. However, to keep the study as simple as
possible, we consider the case with the same teleportation rate for all layers. Let Riα

jβ be
the corresponding transition tensor, where the walker jumps to a neighbor with rate r
and teleports to any other node in the network with the rate 1 − r. This rank-4 tensor is
given by

Riα
jβ = rP iα

jβ + 1 − r
NL

uiα
jβ , (1.29)

where uiα
jβ is the rank-4 tensor with all components equal to 1. The steady-state

solution of the master equation corresponding to this transition tensor provides the
PageRank centrality for interconnected multiplex networks. This definition is valid for
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all multiplexes where all nodes have outgoing edges. If this is not the case, as in several
real-world networks, Eq. (1.29) reduces to Riα

jβ = 1
NL uiα

jβ for all nodes i with no outgoing

connections, ensuring the correct normalization of the transition tensor Riα
jβ . We set

r = 0.85, as in the classical PageRank algorithm.
To compute the aggregate centrality of a node, accounting for the whole intercon-

nected topology, we proceed as for the random walk occupation centrality previously
discussed. Let iα be the eigentensor of the transition tensor Riα

jβ (see Section 1.2.3
for details), denoting the steady-state probability of finding the walker in node i and
layer α. The multilayer PageRank is obtained by simply contracting the layer index of
the eigentensor with the 1-vector: πi = iαuα, that is, by summing up over layers.

1.4.6 Centrality measures based on shortest path

For the sake of completeness, we briefly consider here centrality measures based on
shortest paths, namely, betweenness and closeness.

The extension of the shortest-path betweenness centrality, defined in the case of
monoplex networks in Refs [12, 100, 45], is obtained by counting the number of shortest
paths between any pair of origin and destination nodes (o,d) that go through node j in
the interconnected structure [275, 73].

Equivalently to the case of a monoplex, we define a path �[oσ→dγ ] ∈ P[oσ→dγ ], in the
interconnected multilayer network, as an ordered sequence of nodes which starts from
node o in layer σ and finishes in node d in layer γ. We require that there exists an edge
between all pairs of consecutive nodes in �. Here,P[oσ→dγ ] indicates the set of all possible
paths between node o in layer σ and node d in layer γ. For every path �[oσ→dγ ], it is
possible to define a cost function c(�[oσ→dγ ]), usually depending on the weight of the
edges the path traverses and on the application of interest, to account for the “goodness”
of the path. Hence, the shortest path from node o in layer σ to node d in layer γ is the path

�∗
[oσ→dγ ] = min

�′
[oσ→dγ ]∈P[oσ→dγ ]

c(�′
[oσ→dγ ]), (1.30)

which minimizes the cost function. Using Eq. (1.30), we define the shortest path from
node o to node d, regardless of the layer, as

�∗
[o→d] = min

σ,γ∈{1,...,L}�
∗
[oσ→dγ ]. (1.31)

The shortest-path betweenness centrality τj of node j is defined to be proportional to
the number of times that node j, regardless of the layer, belongs to the set �∗

[o→d] for
every possible origin–destination pair (o,d). We must remark that betweenness centrality
is crucial for understanding congestion in networks [278].

On the other hand, in the same spirit of monoplex networks, we define the shortest-path
closeness centrality (see [28, 249]) of a node j in an interconnected multilayer topology as
the average of the inverse of the cost of the shortest paths that start from any other node o
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in the network [73]. Thus, given the cost of a shortest path c(�∗
[o→i]) between node i and

node o, the shortest-path closeness centrality ξi can be easily computed by considering
all possible origin nodes o.

Note that the shortest paths contributing to betweenness and closeness centralities
may start and/or end in only a few of the available layers, and that they may contain
interlayer edges. This means that, once again, it is impossible to derive the correct
centralities by just considering the aggregated network or the individual layers of the
multilayer network.

1.4.7 Centrality becomes versatility

The calculation of centrality in several empirical multilayer interconnected networks
shows that the highly ranked nodes are not those with large importance in the aggregated
network or in individual layers, but the nodes responsible for the cohesion of the whole
structure, bridging together different types of relations [73]. Thus, they can be called
versatile nodes, and we can safely say that centrality becomes a measure of versatility for
this kind of networks.

Table 1.2 contains the 25 nodes with largest PageRank versatility of a Wikipedia
multilayer interconnected network consisting of biologists, chemists, computer scientists,
economists, inventors, mathematicians, philosophers, and physicists [73]. The multilayer
network is the largest connected component, formed by 5,513 nodes and 8 layers.
Weighted links are established according to the hyperlinks found in the corresponding
Web pages and can be either intralayer or interlayer links (see [73] for all the details).

The top-rated scientist is Edmund F. Robertson, due to his being one of the creators
of the MacTutor History of Mathematics Archive, a Web site containing biographies
of many mathematicians, whose corresponding pages point to this Web site and the
Wikipedia page of Edmund F. Robertson. Thus, this node could be considered spurious,
one which should have been removed from the network during the preprocessing of the
data. Anyway, this is not important for assessing the meaning of versatility. For example,
Milton Friedman made contributions to economics, statistics, international finance,
risk/insurance, and microeconomic theory: Hilary Putnam is a computer scientist and
mathematician with outstanding contributions in the philosophy of mind, of mathematics
and of science; E. O. Wilson is the father of sociobiology; Harold Clayton Urey won the
Nobel Prize in Chemistry and is well known for theories on the development of organic
life from nonliving matter and for playing a significant role in the development of the
atomic bomb; and Kurt Gödel is one of the greatest logicians of all time, with impacts
on several different disciplines, from pure mathematics to physics and philosophy. Out
of this distinguished group, Wilson and Clayton are ranked among the highest (with
scores ranging from 300 to almost 1,000) in the aggregated network, and with respect to
the average centrality of the separated layers. In contrast, despite being still highly rated,
Albert Einstein and Plato are not as highly ranked when the full structure of the network
is considered.

In summary, we have seen how taking into account the full structure of multilayer
interconnected networks has important consequences for their structural properties and
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Table 1.2 Top ranked nodes of Wikipedia dataset by PageRank versatility. For comparison purposes,
the table also shows the corresponding ranks according to the PageRank in the aggregated network, and
the ranks after averaging the PageRank at every single layer as independent networks. In parentheses, the
variation of rank with respect to versatility is shown. Global diversity stands for the number of layers
sending or receiving links to the considered node.

PageRank Centrality Ranking Diversity

Name Versatility Aggregate Average Global

Edmund F. Robertson 1 1 (+0) 18 (+17) 2

Milton Friedman 2 16 (+14) 22 (+20) 8

Hilary Putnam 3 34 (+31) 1,302 (+1,299) 4

E. O. Wilson 4 332 (+328) 996 (+992) 8

Harold Clayton Urey 5 537 (+532) 451 (+446) 8

Kurt Gödel 6 43 (+37) 325 (+319) 8

Avicenna 7 30 (+23) 8 (+1) 4

Ernst Mayr 8 191 (+183) 582 (+574) 8

Herbert A. Simon 9 48 (+39) 14 (+5) 8

Charles Stark Draper 10 1,196 (+1,186) 1,169 (+1,159) 8

Ivan Pavlov 11 423 (+412) 56 (+45) 6

Aristotle 12 3 (−9) 2 (−10) 5

Paul Samuelson 13 26 (+13) 43 (+30) 8

Immanuel Kant 14 2 (−12) 19 (+5) 2

Norbert Wiener 15 68 (+53) 407 (+392) 8

Chien-Shiung Wu 16 100 (+84) 599 (+583) 6

George Dantzig 17 217 (+200) 1,244 (+1,227) 8

Ronald Ross 18 1,602 (+1,584) 5,472 (+5,454) 5

John C. Slater 19 1,242 (+1,223) 1,627 (+1,608) 8

Porphyry (philosopher) 20 311 (+291) 1,063 (+1,043) 3

Peter Mansfield 21 1,502 (+1,481) 2,914 (+2,893) 5

Rosalyn Yalow 22 888 (+866) 1,580 (+1,558) 7

Samuel Goudsmit 23 1,364 (+1,341) 1,960 (+1,937) 8

Albert Einstein 24 10 (−14) 11 (−13) 4

Plato 25 4 (−21) 15 (−10) 2
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the dynamics from them, and these have boosted the interest in this kind of system and
yielded an enormous amount of scientific literature.
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